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Abstract
In this paper, we introduce a level set topology optimization method subjected to coupled mechanical and thermal

loads. Examples considering compliance minimization and stress minimization under temperature and volume
constraints, and mass minimization under stress and temperature constraints, are presented. The p-norm of the stress
field and temperature field is used to approximate the maximum stress and temperature, respectively. The developed
method is applied in the design of an L-bracket and a battery package. The results show that designs obtained by
ignoring the thermal or structural constraints can result in high values of temperature or stress, respectively.

I. Nomenclature

B, Bs = gradients of shape function matrices
C = compliance
d = displacement
fm = mechanical force
ft = thermal force
E = elasticity modulus
H = thermal force generating matrix
Ks = structural stiffness matrix
Kt = thermal stiffness matrix
N , Ns = shape functions
q = heat generation rate
s = sensitivity
t = temperature
x = volume fraction
α = coefficient of thermal expansion
φ = level set function
Ω = domain
κ = conductivity coefficient
ε = strain
σ = stress
(·)i = of an element i
(·)e = at the elemental level
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II. Introduction

This paper discusses topology optimization of load carrying heat dissipating devices, typically used in aircraft
structures to dissipate heat emanating from batteries, engines, or other heat generating sources [1]. The structures in

high temperatures are prone to premature failure due to the combined thermo-mechanical loads. In addition, batteries,
especially lithium-ion batteries can experience thermal runway if the working temperature of the battery exceeds a
certain limit. The design of such load carrying structures which can also dissipate heat, using level set topology
optimization is the focus of this paper.

Topology optimization of thermo-mechanical problems is challenging owing to the design-dependent nature of the
thermal loading. Rodrigues and Fernandes [2] presented a material distribution approach to optimize the topology of a
2D solid subject to an increase in temperature. The compliance of the structure is minimized subject to a constraint on
the volume. In [3], topology optimization using the evolutionary structural optimization (ESO) algorithm is presented
by minimizing the displacement of the structure subjected to mechanical loads and a temperature change. Xia and
Wang [4] used the level set method to optimize a topology by minimizing the compliance subject to a volume constraint.
They showed that the volume constraint can be inactive for some cases. Gao and Zhang [5] presented a formulation of
topology optimization under thermo-elastic stress loads using penalization of the thermal stress coefficient. Zhang et al.
[6] optimized for the mean compliance and strain energy minimization under thermoelastic structures, and compared the
effects of the a range of objective functions. However, in the above studies, the temperature is assumed to be constant
and independent of topology.

In reality, however, the temperature distribution of the structure is dependent on the design in the presence of heat
sources or heat sinks due to heat conduction inside the structure. Li et al. [7] presented multi-objective optimization for
uniform stress and heat flux distributions of a structure under a given mechanical and thermal loads. Kruijf et al.[8]
studied the influence of heat conduction in both structural and material designs. Specifically, Kruijf et al presented a
multiobjective topology optimization method, where two conflicting design criteria—the heat conduction and structural
stiffness performances are optimized. Deng and Suresh [9] presented stress constrained topology optimization of
structures under mechanical and thermal loads. More recently, Kang and James [10] presented multimaterial topology
optimization with elastic and thermal response considerations. They conducted parallel uncoupled finite element
analyses to simulate the elastic and thermal response of the structure. Zhu et al. [11] presented topology optimization of
coupled thermo-mechanical problems by minimizing the compliance of a structure subject to volume and temperature
constraints. However, topology optimization of thermo-mechanical structures subject to both temperature and stress
constraints is not found in literature.

In this study, we present level set topology optimization of structures under coupled mechanical and thermal loads,
subject to stress, temperature, and volume constraints. We conduct a numerical investigation on the designs obtained by
minimizing stress and compliance under temperature and volume constraints. The effects of the temperature constraints
on the topology of the structure for a range of types of problems are presented. We also discuss the designs obtained by
minimizing mass subject to temperature and stress constraints. We discuss the benefits of including both structural
and thermal constraints in the optimization process by showing that the designs obtained by ignoring the thermal or
structural constraints can result in high values of temperature or stress, respectively.

III. Optimization Method
The optimization algorithm presented in this study uses two separate grids: one to represent the level set function

and one to conduct the finite element analyses for structural and heat transfer models. The boundary points and the
volume fraction information is passed on to the finite element analysis (FEA) mesh. The boundary velocities are
optimized using the sensitivity values and mathematical programming, and are passed on to the level set grid. The level
set function is updated based on the boundary point velocities by solving a Hamilton-Jacobi equation. In this section,
the detailed descriptions of the mathematical models developed are presented.

A. Level Set Method
In the level set method, the boundary of the structure is described implicitly as [12]

φ(x) ≥ 0, x ∈ Ω

φ(x) = 0, x ∈ Γ (1)
φ(x) < 0, x < Ω
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where φ(x)is the implicit level set function, Ω is the domain, Γ is the domain boundary. The boundary of the structure is
changed under a given velocity field Vn(x) using the following Hamilton-Jacobi equation [13]

dφ(x)
dt
+ |∇φ(x)|Vn(x) = 0 (2)

The above equation is solved numerically using the following scheme:

φk+1
i = φki − ∆t |∇φki |Vn,i (3)

where i is a discrete point in the domain, k is the iteration number, and |φi | is computed using the Hamilton-Jacobi
weighted essentially non-oscillatory (HJ-WENO [12]) scheme.

B. Heat transfer model description
The steady state heat equation [14] is used to model the heat transfer of a structure, given by

− ∇ · (κ∇T) = q (4)

where κ is the conductivity coefficient, q is the heat generation rate, and T is the temperature. The finite element analysis
is used to solve the above equation in the discrete form

Kt t = qt (5)

where Kt is the conductivity matrix, and and qt is the heat generation matrix, given by

Kt =

Ne∑
i=1

Ke
ti =

Ne∑
i=1

κiKe
t0 (6)

where Ke
ti = κiK

e
t0 is the thermal stiffness matrix of an element i, and Ke

t0 is the homogeneous elemental thermal stiffness
matrix given by

Ke
t0 =

∫
Ωi

BT BdΩ (7)

and

qt =
Ne∑
i=1

qe
ti =

Ne∑
i=1

∫
Ωi

NT qdΩ (8)

where N is the shape functions, and the gradient B = ∇N is the gradient of the shape functions, Ne is the total number
of finite elements, qe

t is the elemental heat generation matrix, Ωi is the domain of an element i, and κi is the conductivity
coefficient of the element i, given by

κi = κmin + xi(κ0 − κmin) (9)

where xi is the fraction of the volume of the element cut by the level set, κmin is the conductivity coefficient of the
passively conducting material, and κ0 is the conductivity coefficient of the solid material. The stiffness matrix Kt and
the heat generation matrix qt are assembled using the above equations and Eq. 5 is solved to determine the temperature
distribution.

C. Thermo-elastic model description
The temperature distribution causes the structure to expand or contract, resulting in thermal strain εt due to

thermo-elasticity. Specifically, the structural strain εt,i of an element i caused by the temperature change is given as

εt,i = αiti (10)

where αi = xiα is the coefficient of linear expansion of the element i, α is the coefficient of linear expansion of the solid
material, and ti is the temperature of the element at the given location. The elemental strain is imposed on the element
as a thermal force f eti , given by [2]

f eti = He
i tei (11)
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where tei is the temperature at the nodes of an element i, and He
i is the elemental thermal load generating matrix given by

He
i = xiHe

0 (12)

where
He

0 =

∫
Ωi

αBT
s CεeNsdΩ (13)

and Bs is the gradient of the shape function Ns, C is the elasticity tensor, and εe = [1, 0, 0, 1]T in 2D and εe =
[1, 0, 0, 0, 1, 0, 0, 0, 1]T is 3D. The elemental thermal load matrix is assembled to form the thermal load matrix as

ft =
Ne∑
i=1

f eti = Ht (14)

where H is the matrix that assembles the thermal force from a given temperature distribution given by

H =
Ne∑
i

He
i (15)

The thermal force is added to the mechanical force fm, and the following equation is used to compute the structural
displacement d under mechanical and thermal loads

Ksd = fm + ft = fm + Ht (16)

where Ks is the structural stiffness matrix of the structure, given by

Ks =

Ne∑
i=1

Ke
si =

Ne∑
i=1

EiKe
s0 (17)

where Ke
si = EiKe

s0 is the elemental stiffness matrix of an element i, and Ke
s0 is the homogeneous elemental stiffness

matrix, given by

Ke
s0 =

∫
Ωi

BT
s CBsdΩ (18)

and Ei and E are the elasticity moduli of the element and the material, given by

Ei = Emin + (E − Emin)xi (19)

where Emin is the Elasticity modulus of the void material.

D. Optimization problem formulation
The objective of this study is to solve the following optimization problem

min J =
∫
Ω

J(Ω)dΩ (20)

subject to

Kt t = qt

Ksd = fm + Ht

G j =
∫
Ω

G j(Ω)dΩ ≤ g0
j j = 1, 2, ..., Ng,

where J is an objective function, gj is the j th constraint function, g0
j is the j th constraint value, and Ng is the number of

constraints. The objective function J and the constraint function G j can be compliance, mass, stress, or temperature.
The temperature state equations and the thermo-elastic state equations are included as equality constraints in the
optimization formulation in Eq. 20.
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E. Sensitivity computation
In this section, the computation boundary point sensitivities for compliance, stress, and temperature, using the

adjoint method is presented. First, the sensitivities are computed at the centroids of all the elements from which the
boundary point sensitivities are computed using the least squares interpolation [15]. The details of the sensitivity
computation is presented here.

1. Compliance sensitivities
The compliance of the structure under thermal and mechanical loads is given by

C = dT Ksd = f T d = ( fm + Ht)T d (21)

The Lagrangian function L of compliance is defined as

L = f T d + λTd ( fm + Ht − Ksd) + λTt ( ft − Kt t) (22)

where λd and λt are the adjoint variables corresponding to structural displacement d and temperature t. λd is computed
by solving ∂L

∂d = 0, which yields

f T − λTd Ks = 0 (23)

Next, λt is computed by solving ∂L
∂u = 0, which yields

λTd H − λtKt = 0 (24)

The Lagrangian function L is differentiated with respect to the volume fraction of each element i to compute the
elemental centroid sensitivities of compliance si , given by

si =
∂L

∂xi
= teTi He

0 de
i + λ

eT
di He

0 tei − λ
eT
di Ke

s0de
i − λ

eT
ti Ke

t0tei (25)

where λe
di

and λeti are the adjoint variables of displacement and temperature at the element nodes, respectively, de
i and

tei are the displacement and temperature values at the nodes, respectively.

2. Stress sensitivities
The maximum stress of a structure is approximated by the p-norm of the stress field. The p-norm of the stress field

is given by

σp =

(
Ne∑
i=1

σp,i

)1/p

=
©«
Ne∑
i=1

Ng∑
j=1

σ
p
vm,i j

ª®¬
1/p

(26)

where σvm,i j is the Von Mises stress of an element i at a Gauss point j, given by

σvm,i j =
√
σT
ijVσi j (27)

where V is the Voigt matrix [16], and σi j is the stress tensor of an element i at a Gauss point j, given by

σi j = xiC(Bs,i jde
i − εt,i j) (28)

where εt,i j = Bt,i j tei is the thermo-elastic strain, and

Bt,i j = αε
eNj (29)

The Lagrangian function L of the p-norm stress under the structural and thermal equilibrium is given by

L = σp + λ
T
d ( fm + Ht − Ksd) + λTt ( ft − Kt t) (30)
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The adjoint variable λd is computed by solving ∂L
∂d = 0, which yields

fσ − λTd Ks = 0 (31)

where fσ =
∑Ne

i f iσ and

f iσ =
dσp,i

dde
i

=
σ

1−p
p

p

Ng∑
j=1

pσp−2
vm,i jσ

T
ijVCBs,i j (32)

The adjoint variable λt is computed by solving ∂L
∂t = 0, which yields

fσ,t − λTt Kt = 0 (33)

where fσ,t =
∑Ne

i f iσ,t and

f iσ,t =
dσp,i

dtei
= −

σ
1−p
p

p

Ng∑
j=1

pσp−2
vm,i jσ

T
ijVCBt,i j (34)

Next the Lagrangian function L is differentiated with respect to the volume fraction of each element i to compute the
pievewise constant sensitivities of the p-norm stress sσ,i , given by

sσ,i =
∂L

∂xi
=
σ

1−p
p

p

Ng∑
j=1

[
pσp−2

vm,i jσ
T
ijC(Bs,i jde

i − εt,i j)
]
+ λeTdi H0

e tei − λ
eT
di K0

sede
i − λ

eT
ti Ke

t0tei (35)

The sensitivity of the maximum stress is then approximated as

si = max∀ i, j
(σvm,i j)

sσ,i
σp

(36)

3. Temperature sensitivities
The maximum temperature of the structure is approximated using the p-norm of the temperature vector on the nodes.

The p-norm Tp of the temperature is given by

Tp =

(
Nn∑
i=1

tpi

)1/p

(37)

where Nn is the number of finite element nodes. The Lagrangian function L of the temperature under the thermal
equilibrium is given by

L = Tp + λ
T
t ( ft − Kt t) (38)

The adjoint variable λt is computed by solving ∂L
∂t = 0, which yields

T1−p
p

p
tT − λTt Kt = 0 (39)

The Lagrangian function L is differentiated with respect to the volume fraction of each element i to compute the
elemental centroid sensitivities of the pnorm of temperature sT,i , given by

sT,i = −λeTti K0
t0tei (40)

The sensitivity of the maximum temperature is computed as

si = max∀i (ti)
sT,i
Tp

(41)
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IV. Numerical Examples
In this section, the numerical examples are presented. The compliance and stress of the structures are minimized

under a mass constraint and a range of maximum temperature constraints. Next the mass is minimized under stress and
temperature constraints, and the resulting designs are compared.

A. L-bracket design
A schematic of an L-bracket (dimensions are 0.1 m × 0.1 m and a thickness of 0.01 m) is shown in Figure 1. A

square section of dimensions 0.06 m × 0.06 m is removed from the top-right side to form the L-bracket. The finite
element mesh of size 100 × 100 elements is used. A force F = 50 kN is applied on the right hand side and and the
L-bracket is clamped on the top. A thermal load Q = 9 W is applied on the right hand side and the top portion acts as a
heat sink. The elastic modulus of the structure is E = 69 GPa and with Poisson’s ratio ν = 0.3, density ρ = 2700 kg/m3,
and thermal conductivity κ = 235 W/m/K.

Fig. 1 A schematic of an L-bracket subject to mechanical and thermal loading.

1. Compliance minimization
In this section, the compliance C of the L-bracket is minimized subject to a volume constraint V0 = 50% and

maximum temperature T∗ constraints ranging from 49°C to 69°C. The optimization problem can be described as

min C (42)
subject to
Kt t = qt

Ksd = fm + Ht

V ≤ V0

T ≤ T∗

(43)

Figure 2 shows the optimal topologies obtained for a range of the maximum temperature constraints. Figure 3 shows
the compliance values of the optimum topologies obtained for the maximum temperature constraints. As we can see, for
low values of maximum temperature constraints, the optimum topology is narrow near the re-entrant corner in order to
satisfy the temperature constraint, resulting the high value of compliance. For example when the maximum temperature
constraint T∗ = 49°C, the optimal compliance is high (C = 906.5 Nm). As the maximum temperature constraint is
relaxed, the the topology gets wider near the re-entrant corner, and as a result the compliance is reduced. Specifically,
for a maximum temperature constraint T∗ = 69°C, the optimal compliance is (C = 465.4)Nm. In other words, the
compliance decreases by a factor of 0.52 when the temperature constraint is increased from 49°C to 69°C.
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Fig. 2 Optimal topologies obtained by minimizing structural compliance under a range of maximum temper-
ature constraints.

Fig. 3 Optimal compliance of for a range of maximum temperature constraints.

2. Stress minimization
In this section, the p-norm stress σp (p = 12) of the L-bracket is minimized subject to a volume constraint V0 ≤ 50%

and the maximum temperature T∗ constraints ranging from 49°C to 69°C. The optimization problem can be described as

min σp (44)
subject to
Kt t = qt

Ksd = fm + Ht

V ≤ V0

T ≤ T∗

(45)

Figure 4 shows the optimal topologies obtained by minimizing the p-norm stress for varying maximum temperature
constraints. Figure 5 shows the maximum stress and the p-norm stress values while Figure 6 shows the stress distribution
of the optimum topologies obtained for varying maximum temperature constraints.

As we can see from Figure 4, for low values of the maximum temperature constraints, the optimum topology is
narrow near the re-entrant corner — in order to satisfy the temperature constraint similar to the compliance minimization
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case, resulting in high stress values. For example in the case of the maximum temperature constraint T∗ = 49° C, the
optimal topology has a sharp re-entrant corner, and the pnorm stress is high (approximately 140 MPa).

As the maximum temperature constraint is relaxed, the the topology gets wider and more rounder near the re-entrant
corner, and as a result the maximum stress is reduced. Specifically, for the maximum temperature constraint T∗ = 69°C,
the optimal p-norm stress is σp = 34.7 MPa. In other words, the p-norm stress decreases by a factor or 0.25 when the
temperature constraint is increased from 49°C to 69°C.

Fig. 4 Optimal topologies obtained by minimizing p-norm stress under a range of maximum temperature
constraints.

Fig. 5 Optimal p-norm stress and corresponding maximum stress for a range of temperature constraints.

3. Mass minimization under stress and temperature constraints
In this section, the mass of the structure is minimized subject to constraints on the maximum stress and temperature.

The temperature constraint T∗ = 65oC and the stress constraint σ∗ = 300 MPa. The optimization problem can be
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Fig. 6 Stress distribution of optimal topologies obtained by minimizing p-norm stress under a range of maxi-
mum temperature constraints.

described as

min ρV (46)
subject to
Kt t = qt

Ksd = fm + Ht

σ ≤ σ∗

T ≤ T∗

(47)

The optimal designs are shown in Figure 7. The optimized mass of the structure is 78.3 g, and the temperature and
stress constraints are satisfied (top row of Figure 7). When the mass is minimized subject to the stress constraint, the
optimal mass 59.4 g (middle row of Figure 7), which is lower than both stress and temperature constraints. For this case,
the stress constraint is satisfied, but the maximum temperature is significantly high (93oC). On the other hand, when the
mass is minimized subject to only the temperature constraint, the optimal mass is 59.9 g (bottom row of Figure 7), which
is also lower than the design case with both stress and temperature constraints. For this case, the temperature constraint
is satisfied, but the maximum stress of the structure is high (245 MPa). This investigation shows the importance of
considering both the stress and temperature constraints.

B. Battery pack design
The topology optimization of a battery pack under thermal and mechanical loading is presented. A schematic of a

battery pack (dimensions are 10 cm × 10 cm × 5 cm) is shown in Figure 8. The structure is subjected to a uniform
loading (F = 107 N/m) on all four sides. A battery cell is assumed to be non-designable non-load carrying and generates
a thermal load of Q = 300 W/m. The outer part of the structure is assumed to be acting as a heat sink. Due to the
symmetry, only a quarter of the structure is modeled using an FEA mesh of 100 × 100 elements. The elastic modulus of
the structure is E = 69 GPa and Poisson’s ratio ν = 0.3, density ρ = 2700 kg/m3, and thermal conductivity κ = 235
W/m/K.

1. Compliance minimization
In this section, the compliance of the structure is minimized for a range of maximum temperature constraints from

T∗ = 8°C to T∗ = 15°C. The optimum topologies are shown in Figure 9, and the corresponding temperature distributions
are shown in Figure 10.

As we can see, for low values of the maximum temperature constraints, the optimum topology ensures the temperature
at the center of the structure is minimized resulting in high values of compliance (Figure 11). For example when
the maximum temperature constraint T∗ = 8°C, the optimal compliance is high (C = 5.7 kNm). As the maximum
temperature constraint is relaxed, the the material is more distributed, and as a result the compliance decreases.
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Fig. 7 Minimum mass designs of the L-bracket subject to temperature and stress constraints.

Fig. 8 A schematic of a battery pack subject to mechanical and thermal loading.

Specifically, for the maximum temperature constraint T∗ = 69°C, the optimal compliance is C = 1.6 kNm. In other
words, the compliance decreases by a factor or 0.28 when the temperature constraint is increased from 49°C to 69°C.

Fig. 9 Optimal topologies obtained by minimizing structural compliance under a range of maximum temper-
ature constraints.
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Fig. 10 Temperature distribution of optimal topologies obtained by minimizing structural compliance under
a range of maximum temperature constraints.

Fig. 11 Optimal compliance for a range of temperature constraints

2. Stress minimization
In this section, the p-norm stress of the structure is minimized for a range of maximum temperature constraints

from T∗ = 8oC to T∗ = 15oC. The optimum topologies obtained are shown in Figure 12, the corresponding temperature
distributions are shown in Figure 13, and the stress distribution is shown in Figure 14.

Fig. 12 Optimal topologies obtained by minimizing structural compliance under a range of maximum temper-
ature constraints.

For the maximum temperature constraints, the optimum topology ensures the temperature at the center of the
structure is minimized resulting in high values of stresses (Figure 15). For example when the maximum temperature
constraint T∗ = 8°C, the optimal p-norm stress is high (σp = 470.2 MPa). As the maximum temperature constraint is
relaxed, the the material is more distributed, and the p-norm stress is lower. Specifically, for the maximum temperature
constraint T∗ = 69oC, the optimal p-norm stress is (σp = 70.0 MPa). The p-norm stress decreases by a factor or 0.15
when the temperature constraint is increased from 49oC to 69oC.

3. Mass minimization subject to stress and temperature constraints
The mass of the battery pack structure is minimized subject to the constraints on the maximum stress and temperature.

The maximum temperature constraint T∗ = 10oC and the stress constraint σ∗ = 100 MPa. The optimal designs are
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Fig. 13 Temperature distribution of optimal topologies obtained by minimizing stress under a range of maxi-
mum temperature constraints.

Fig. 14 Stress distribution (capped at 100 MPa) of optimal topologies obtained by minimizing p-norm stress
under a range of maximum temperature constraints.

Fig. 15 Optimal p-norm stress and corresponding maximum stress for a range of temperature constraints.

shown in Figure 16. The optimized mass of the structure is 2.27 kg and the temperature and stress constraints are
satisfied (top row of Figure 16). When the mass is minimized subject to only the stress constraint, the optimal mass 1.88
kg (middle row of Figure 16), which is lower than the design case with both stress and temperature constraints. The
stress constraint is satisfied, but the maximum temperature is significantly high, 25oC. On the other hand, when the
mass is minimized subject to only the temperature constraint, the optimal mass is 2.04 kg (bottom row of Figure 16),
which is also lower than the design case with both stress and temperature constraints. The temperature constraint is
satisfied, but the maximum stress of the structure is high, 544 MPa. This investigation, similar to the L bracket design
case, shows the importance of considering both the stress and temperature constraints.

V. Conclusion
Topology optimization under coupled mechanical and thermal loads subject to stress and temperature constraints is

presented in this paper. The level set method is used for topology optimization, and the level set boundary sensitivities
are computed using the adjoint method. The p-norm of the stress and temperature fields is used to approximate the
maximum stress and temperature inside the structure, respectively. The designs obtained by minimizing stress and
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Fig. 16 Maximum stress and temperature constrained minimum mass design.

compliance under temperature constraints show that the compliance and stress can significantly increase for low values of
temperature constraints. Additionally, designs obtained by minimizing mass subject to stress and temperature constraints
are heavier than the designs obtained by minimizing mass subject to only stress or only temperature constraints. However,
the minimum mass designs subject to temperature constraints have high values of stress; and the minimum mass designs
subject to stress constraints have high values of temperature. For example, the mass of the L bracket designed for
minimum mass subject to only a temperature constraint is 77% lighter but has a maximum stress value of that is 816%
more than the design obtained by including the stress constraint. Similarly, the mass of the battery pack designed for
minimum mass subject to only a temperature constraint is 90% lighter but has a maximum stress value of that is 544%
more than the design obtained by including the stress constraint. This demonstrates the importance of coupling the
thermal and structural analyses in optimization.

Acknowledgments
The authors acknowledge the support from DARPA (Award number HR0011-16-2-0032) and NASA (grant number

80NSSC18M0153).

References
[1] Dbouk, T., “A review about the engineering design of optimal heat transfer systems using topology optimization,” Applied

Thermal Engineering, Vol. 112, 2017, pp. 841–854.

[2] Rodrigues, H., and Fernandes, P., “A material based model for topology optimization of thermoelastic structures,” International
Journal for Numerical Methods in Engineering, Vol. 38, No. 12, 1995, pp. 1951–1965.

[3] Li, Q., Steven, G. P., and Xie, Y., “Displacement minimization of thermoelastic structures by evolutionary thickness design,”
Computer Methods in Applied Mechanics and Engineering, Vol. 179, No. 3-4, 1999, pp. 361–378.

[4] Xia, Q., and Wang, M. Y., “Topology optimization of thermoelastic structures using level set method,” Computational
Mechanics, Vol. 42, No. 6, 2008, p. 837.

[5] Gao, T., and Zhang, W., “Topology optimization involving thermo-elastic stress loads,” Structural and multidisciplinary
optimization, Vol. 42, No. 5, 2010, pp. 725–738.

14



[6] Zhang, W., Yang, J., Xu, Y., and Gao, T., “Topology optimization of thermoelastic structures: mean compliance minimization
or elastic strain energy minimization,” Structural and Multidisciplinary Optimization, Vol. 49, No. 3, 2014, pp. 417–429.

[7] Li, Q., Steven, G. P., Querin, O. M., and Xie, Y., “Structural topology design with multiple thermal criteria,” Engineering
Computations, Vol. 17, No. 6, 2000, pp. 715–734.

[8] de Kruijf, N., Zhou, S., Li, Q., and Mai, Y.-W., “Topological design of structures and composite materials with multiobjectives,”
International Journal of Solids and Structures, Vol. 44, No. 22-23, 2007, pp. 7092–7109.

[9] Deng, S., and Suresh, K., “Stress constrained thermo-elastic topology optimization with varying temperature fields via
augmented topological sensitivity based level-set,” Structural and Multidisciplinary Optimization, Vol. 56, No. 6, 2017, pp.
1413–1427.

[10] Kang, Z., and James, K. A., “Multimaterial topology design for optimal elastic and thermal response with material-specific
temperature constraints,” International Journal for Numerical Methods in Engineering, Vol. 117, No. 10, 2019, pp. 1019–1037.

[11] Zhu, X., Zhao, C., Wang, X., Zhou, Y., Hu, P., and Ma, Z.-D., “Temperature-constrained topology optimization of thermo-
mechanical coupled problems,” Engineering Optimization, 2019, pp. 1–23.

[12] Sethian, J. A., Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics,
computer vision, and materials science, Vol. 3, Cambridge university press, 1999.

[13] Sethian, J. A., and Vladimirsky, A., “Fast methods for the Eikonal and related Hamilton–Jacobi equations on unstructured
meshes,” Proceedings of the National Academy of Sciences, Vol. 97, No. 11, 2000, pp. 5699–5703.

[14] Reddy, J. N., and Gartling, D. K., The finite element method in heat transfer and fluid dynamics, CRC press, 2010.

[15] Dunning, P. D., Kim, H. A., andMullineux, G., “Investigation and improvement of sensitivity computation using the area-fraction
weighted fixed grid FEM and structural optimization,” Finite Elements in Analysis and Design, Vol. 47, No. 8, 2011, pp.
933–941.

[16] Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. Z., The finite element method: its basis and fundamentals, Elsevier, 2005.

15


	Nomenclature
	Introduction
	Optimization Method
	Level Set Method
	Heat transfer model description 
	Thermo-elastic model description 
	Optimization problem formulation
	Sensitivity computation
	Compliance sensitivities
	Stress sensitivities
	Temperature sensitivities


	Numerical Examples
	L-bracket design
	Compliance minimization
	Stress minimization
	Mass minimization under stress and temperature constraints

	Battery pack design
	Compliance minimization
	Stress minimization
	Mass minimization subject to stress and temperature constraints


	Conclusion

